Economics of Politics, Problem set #1 Instructor: Hideki Konishi

Exercise 1.

Three voters, 1, 2, and 3, are voting over a consumption tax rate, t_c . The set of alternatives is $\mathcal{A} = \{0\%, 5\%, 10\%\}$. $V_i(t)$ denotes voter *i*'s utility when the tax rate is $t_c\%$. Specifically,

 $V_1(0) > V_1(5) > V_1(10)$ $V_2(5) > V_2(10) > V_2(0)$ $V_3(10) > V_3(0) > V_3(5)$

Answer the following questions.

- (1) Does a Condorcet winner exist? If it does, which alternative is a Condorcet winner?
- (2) Does each voter have single-peaked preferences? If not, whose preferences are not single-peaked?

Exercise 2.

Three voters, 1, 2, and 3, are voting over a pair of social security expenditures, s, and military expenditures, m. Voter *i*'s utility, $V_i(s, m)$, is specified as:

$$V_i(s,m) = -(s-s_i)^2 - (m-m_i)^2,$$

where (s_i, m_i) is voter *i*'s most-preferred pair of *s* and *m*. The set of alternatives is given as $\mathcal{A} = \{(s, m) \in \Re^2 \mid s + m \leq 100, s \geq 0, m \geq 0\}$. Note that $(s, m) \in \Re^2$ means that both *s* and *m* are real numbers. Answer the following questions.

- (1) Suppose that $(s_1, m_1) = (0, 0)$, $(s_2, m_2) = (100, 0)$, and $(s_3, m_3) = (0, 100)$. Does there exist a Condorcet winner? If it does, what pair of s and m is the one? If it does not, explain why.
- (2) Suppose that $(s_2, m_2) = (100, 0)$, and $(s_3, m_3) = (0, 100)$ as in the previous question. What condition should (s_1, m_1) satisfy to guarantee the existence of a Condorcet winner?

Exercise. 3

Consider a game in which two individuals, i = 1, 2, simultaneously provide a pure public good. Individual *i*'s utility function is

$$u_i = 100x_i - 1.25x_i^2 + c_i,$$

where x_i is *i*'s consumption of the public good and c_i is her consumption of a private good. Let y_i denote individual *i*'s provision of the public good, which must satisfy $y_i \ge 0$, and w_i be her initial endowment of the private good. The unit cost of a public good provision is equal to 50. Answer the following questions, assuming that w_i is sufficiently large.

- (1) How are x_1 , x_2 , y_1 and y_2 related? Show equations holding among them.
- (2) Solve the Pareto-efficient provision of the public good, assuming an internal solution.
- (3) Given individual j's provision of the public good, y_j , What is individual i's best response to it?
- (4) Solve all the (pure-strategy) Nash equilibrium of this game, and show that the public good is socially undersupplied in the equilibria.
- (5) Explain the reason for the equilibrium underprovision of the public good, using the two words, "social marginal benefits" and "private marginal benefits."
- (6) Suppose instead that individual 2 chooses y_2 after individual 1 chooses y_1 , knowing the amount of y_1 . How much does individual 1 provide in the subgame-perfect Nash equilibrium of this game?

Exercise 4. Consider a society consisting of n individuals indexed by $i = 1, 2, \dots, n$ $(n \ge 3)$. Individual i has an endowment of a private good, w_i , one unit of which can be transformed into one unit of a pure public good. Each individual has a common utility function,

$$u_i = \alpha \log c_i + (1 - \alpha) \log g, \ 0 < \alpha < 1,$$

where c_i is her consumption of the private good and g is that of the public good. Answer the following questions.

- (1) Let g^o be the Pareto-efficient provision of the pure public goods. Formulate the maximization problem to solve g^o .
- (2) Show that $g^o = (1-\alpha) \sum_{i=1}^n w_i$, manipulating the first order conditions in the maximization problem formulated in (3).

Suppose that individuals voluntarily provide a public good out of their endowment. Let g_i be individual *i*'s voluntary contribution and g_{-i} be the sum of the others' contributions, i.e., $g_{-i} = \sum_{j \neq i} g_i$.

- (3) What is individual *i*'s optimal contribution when g_{-i} is taken as given?
- (4) Consider a Nash equilibrium in which every individual makes a positive contribution, i.e., $g_i > 0$ for all *i*. What is the equilibrium total provision of the public good?
- (5) Under what condition does a Nash equilibrium exist with every individual contributing a positive amount?

Suppose next that a majority voting takes place to determine the provision of the public good. Once the provision is determined, each individual has to share the cost equally; that is, if g units of the public good are supplied, each has to pay g/n units of the private good.

- (6) Because of the cost-sharing rule, individual *i*'s consumption of the private good is equal to $w_i g/n$ when g units of the public goods is provided (as far as $w_i \ge g/n$). What is individual *i*'s most-preferred amount of the public good?
- (7) Show that every individual has single-peaked preferences over the provisions of the public good by making use of the second order derivative of her utility function.
- (8) Suppose that n is odd and $w_1 < w_2 < \cdots < w_n$. What is the Condorcet winner?
- (9) Under what condition does the Condorcet winner coincides with the Pareto-efficient level, g^{o} ?